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Chapter 1

Introduction to CCN1

Nicolas Gillet, together with the 4D-Earth consortium

The objective of the main contract to understand the rapid (interannual) changes
in the geomagnetic field was successfully achieved by the contractor by providing
a general framework with use of Swarm observations that enables their physical
understanding. This also led to the detection of Magneto-Coriolis (MC) waves
for the first time. This dynamics explains sudden changes in the rate of change
of the geomagnetic field (a.k.a ‘jerks’), associated with pulses in the second time
derivative of the field. The overarching goal of CCN1 is to contribute to a better un-
derstanding of these dynamics and to map the base state within Earth’s outer core,
on top of which Quasi-Geostrophic (QG) hydro-magnetic modes exist. Knowl-
edge of the basic state within the core is expected to advance our understanding
of the processes in the core generating and maintaining the Earth’s dynamo. In
addition, a first model of the laterally varying electrical conductivity in the region
above the Core Mantle Boundary (CMB) shall be produced, using a bottom-up
approach where the core dynamics is used as a source to sample the mantle con-
ductivity. The relation between such lateral variations and the Large Low-Shear-
Velocity Provinces (LLSVP) will be discussed. It should contribute to improving
our understanding of the dynamical and thermo-chemical balances within the deep
Earth, and thus lead to better constrain geodynamical models.

Motivations for the CCN

Sudden changes in the rate of change of the geomagnetic field (or ‘jerks’, see Man-
dea et al, 2010, for a review) have been first detected some 50 years ago in ground-
based records. Over the satellite era they have been associated with pulses in the
second time derivative of the field or ‘secular acceleration’ (Chulliat and Maus,
2014; Finlay et al, 2016). These dynamics have largely remained unexplained so
far.

Prior to our project kick-off, acceleration pulses resembling those observed in
geomagnetic time series had only recently been identified in geodynamo simula-
tions approaching Earth conditions (Aubert and Finlay, 2019), thanks to a param-
eterization of turbulent processes (Large Eddy Simulations, or LES, see Aubert
et al, 2017). They were at that stage associated in computations with one family of

1



2 CHAPTER 1. INTRODUCTION TO CCN1

quasi-geostrophic (QG, or axially invariant due to the domination of the Coriolis
force) motions, non-axisymmetric QG Alfvén waves, in which inertia balances the
Lorentz force in the momentum balance.

The work carried out by our consortium has allowed us to design a gen-
eral framework that provides a physical understanding of rapid geomagnetic field
changes. It also led to the first detection of Magneto-Coriolis (MC) waves (see
Fig. 1.1) thanks to two decades of continuous magnetic monitoring from space,
most recently via the Swarm mission (see Hammer et al, 2021; Finlay et al, 2020).
As described below, our research domain has thus significantly evolved over the
past two years.
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Figure 1.1: QG MC modes of period T „ 7 years, detected from geomagnetic
satellite data (Gillet et al, 2022). The time-latitude map for the core surface az-
imuthal velocity at longitude 180˝E (top) shows several zero-crossings in latitude
and a stronger signature towards the equator. The time-longitude diagram at the
equator (bottom) illustrates a westward phase velocity of the mode, with a speed
about 1500 km/yr.

First, the ‘71%-path’ dynamo simulation run at extreme parameters (Aubert
and Gillet, 2021) have shown many occurrences of magnetic acceleration events
(see the catalog provided with Task E). These may be characterized depending
on the relative importance of advection by the flow and wave propagation (Aubert
et al, 2022). The catalog is rich in events, and a detailed analysis is required in order
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to assess whether all rapid changes computed so far share the same observational
and dynamical properties, and how they compare with those recorded from ground
or space. The 71%-path simulation also shows QG hydromagnetic waves triggered
in an ubiquitous manner, whether it be torsional (axisymmetric) Alfvén waves and
QG Alfven waves on period about the Alfvén time (equivalent to „ 2 yrs in the
core), or Rossby waves on shorter periods.

Meanwhile, an important breakthrough from our consortium has been the dis-
covery of QG MC waves with interannual periods. On the large length-scales that
are accessible with magnetic records („ 800 km at the core surface), MC waves
were previously believed to occur on centennial and longer periods (Hide, 1966).
However, the eigenmode study by Gerick et al (2021) shows that QG MC modes
do also exist on interannual periods, with a magnetic signature strongest close to
the equator, as observed in satellite magnetic data (Finlay et al, 2020). This study
constitutes an important theoretical and computational achievement, where two di-
mensional velocity perturbations in a sphere have been for the first time coupled
with three-dimensional magnetic perturbations satisfying a potential field condi-
tion at the core surface.

We succeeded in detecting such a QG MC mode, with period „ 7 yr, in core
surface flows inverted from satellite magnetic data (Gillet et al, 2022). These
present stronger patterns in the equatorial belt (of amplitude up to 5 km/yr), and
travel westward at the equator, at a phase speed „ 1500 km/yr much larger than
the fluid velocity (see Fig. 1.1). This revised understanding of rapid core dynam-
ics paves the way to a deterministic modelling of subdecadal geomagnetic field
changes; a crucial part of this framework is knowledge of magnetic field within
the outer core. It is the overarching goal of the current CCN to map the base state
within the Earth’s outer core, on top of which QG hydro-magnetic modes exist.
Knowledge of the basic state withing the core will advance our understanding of
the processes in the core generating and maintaining the Earth’s dynamo.

So far, the main information on the field deep in the core has been obtained
through the detection of torsional Alfvén waves in magnetic observations (Gillet
et al, 2010). This knowledge is however restricted to a one dimensional profile, the
r.m.s. of the cylindrical radial field Bs averaged over φ and z as a function of the
distance s to the rotation axis (with ps, φ, zq the cylindrical coordinates). In princi-
ple, the detected QG MC modes will give access to a two dimensional map of the
z-averaged r.m.s. Bs (as a function of s and φ). To more fully understand these ex-
citing new modes and the constrains they provide we need to explore further their
sensitivity to the background field with dedicated direct numerical simulations and
eigenmodes studies. Furthermore, a deeper understanding of the magnetic bound-
ary conditions relevant for the interannual dynamics may lead to improved spa-
tial constraints on the core flow recovery. Of course, not all the magnetic signal
recorded by Swarm is attached to such modes; unresolved processes also account
for a significant fraction of interannual field changes (about one half according to
our recent work). These two sources of signal are covariant, and properly account-
ing for the interplay between QG MC modes and subgrid-scale processes should



4 CHAPTER 1. INTRODUCTION TO CCN1

allow us to reduce uncertainties on core flows, and thus enhance the recovery of
the field deep in the core.

In this quest to use Swarm observations of sub-decadal core field variations
to obtain the magnetic magnetic field and fluid flow within the core, we plan to
address the several issues listed below:

• upgrade and extend the geomagnetic datasets, in a manner that is suited for
incorporation into core dynamics analysis tools, including adapted informa-
tion on data error covariances (Task L);

• improve the pygeodyn core flow re-analysis tool used to isolate QG MC
waves from observations, so that it better handles unresolved processes and
their relation with large length-scale flows, aiming to reduce uncertainties
(Task M);

• systematically detect and characterize jerks in satellite, ground observatory
and geodynamo simulation data (Task N);

• image the basic state (magnetic field, velocity field and buoyancy field)
within the outer core from Swarm data products, in a framework that in-
corporates both the statistical and dynamical information from geodynamo
simulations (Task O);

• document the sensitivity of QG MC modes to the background magnetic field
with an eigenmodes solver (Task P);

• extract geophysical knowledge on the core magnetic field and the lower man-
tle conductance in the equatorial region of the Earth’s core, from the analysis
of QG MC modes detected in core flow models (Task Q);

• characterize the propagation of QG MC and QG Alfvén waves in forward
3D simulations, together with the magnetic boundary conditions they satisfy,
and document how these could be considered to improve the constraint on
core surface flow models (Task R).
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2.1 Updated geomagnetic datasets, and data error covari-
ance matrices (preliminary release at MS-2)
4DEarth_Swarm_Core ESA project deliverable CCN1 D-L.1

Chris Finlay, Magnus Hammer, Clemens Kloss and Nils Olsen
DTU Space, Technical University of Denmark

The report on geomagnetic datasets from the initial stage of the 4D Deep Earth
Core project describes in detail the data products and models (Geomagnetic Virtual
Observatories - GVOs, Ground Observatories - GOs, CHAOS geomagnetic field
model) and their processing schemes – see Section § 2.1 (deliverable D-B.1) of
the final version of the Scientific Report (before the start of CCN1). Below we
document the updates and extensions of these datasets provided in this delivery.

2.1.1 updated GVO Datasets

A zip file containing updated Swarm GVO data files can be found at
http://www.spacecenter.dk/files/magnetic-models/GVO/GVO_data_SWARM.zip

This contains updated 4 monthly and 12 monthly GVOs produced using DTU’s
GVO software, and also (for completeness) the latest 1 monthly official Swarm
GVO product (which involves additional processing steps applied by BGS). These
were derived from Swarm L1B Mag-L OPER data version 0602. Data up to end
of April 2023 was used for the 4 monthly and 1 monthly GVOs and data up to end
of 2022 for the 12 monthly GVOs. No update of the Oersted, CHAMP, Cryosat-2
or Grace GVOs is provided in this delivery, the latest versions of these legacy
missions are still those of the previous release – see associated zip folders for each
mission at
http://www.spacecenter.dk/files/magnetic-models/GVO/

as there has been no change in the processing scheme.
Each GVO file includes values for observed field, core field (with estimates of

magnetospheric and ionospheric fields removed) and SV (from annual difference of
the core field data). The file format follows the Swarm Geomagnetic Virtual Obser-
vatories Product Definition, Rev.2B, SW-DS-DTU-GS-004_2-1_GVO_PDD. See
Hammer et al (2021) for full details of the GVO processing algorithm. Further
specific details regarding this update are found in the README file in the zipped
folder.

2.1.2 Updated Ground Observatory data

A zip file containing updated GO data files in cdf format (following the ESA GVO
file specifications) with 1monthly, 4monthly and annual averaging for data based
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on hourly mean data from 1997 to 2023 at 218 Ground observatories (from the
BGS AUX_OBS data product version 0136 from May 2023) can be found at:
http://www.spacecenter.dk/files/magnetic-models/GO/GO_data.zip

Each file contains the ’Observed’ field (e.g. observed monthly means) and
’Core field’ (e.g. revised monthly means) as well as SV derived as annual differ-
ences of the ’Core Field’. Full details of the processing of each data file and given
in the file Readme_GO.txt inside the zip file.

This format has been successfully used within the consortium within the initial
phase of the project e.g. by the Grenoble team. These are updated versions of the
GO datasets described in the report of the initial phase of the Swarm+4D Deep
Earth: Core project.

Refer to the archived_GO_files for earlier versions of the GO datafiles. These
are labelled by version number.

2.1.3 Updated version of the CHAOS field model

Below are links to the CHAOS-7.15 geomagnetic field model, an updated version
of the CHAOS-7 geomagnetic field model (Finlay et al, 2020), using Swarm
baseline 0602 data up 8th June 2023 and ground observatory data up to end of
May 2022 (based on the BGS AUX_OBS data product version 0136 from May
2023). Model coefficients for the time-dependent internal field are provided in
spline coefficient and shc formats, while the .mat file contains all parts of the
model. Links to software to read and use these files in Python, Matlab and Fortran
can be found at:
http://www.spacecenter.dk/files/magnetic-models/CHAOS-7/index.html

2.1.4 Updated vector and scalar satellite data files as used in the
CHAOS field model

The link below
http://www.spacecenter.dk/files/magnetic-models/CHAOS-7/CHAOS-7_15_data.zip

gives ascii files containing the selected vector and scalar satellite data (from the
Swarm, CHAMP, Oersted and Cryosat-2 satellites) used in building the CHAOS-
7.15 field model. These contain Swarm data up until early June 2023. The vector
field is provided as components in an Earth centred, Earth fixed, spherical polar
coordinate system (i.e. radial, southward, eastward components). Estimates of the
crustal and external fields based on the CHAOS-7.15 model are also provide for
each datum, so users interested in the core field can subtract these if wished. The
file header specifies the exact content.



10 CHAPTER 2. DESCRIPTIONS OF THE DATASETS

2.1.5 Full Covariance Matrix for Swarm 4 monthly GVOs

A full data error covariance matrix for the 4-monthly GVO SV product can be
found at
http://www.spacecenter.dk/files/magnetic-models/GVO/COV_GVO_4mon_SV_0101.txt

Format is ascii, Covariance matrix of size 900x900 (900= 3 components at 300
GVOs) order as in GVO cdf files. If a covariance matrix for the core field is
required, assuming uncorrelated errors in time one can use the above SV matrix
(derived from annual differences of the core field) scaled by a factor 0.5. This was
derived by the following procedure:

1. Load 4 monthly GVO product, core field or SV series

2. Remove large outliers w.r.t. CHAOS-7.15 field model

3. Compute a Gaussian Process fit to each component at each GVO location
(squared exponential kernel).

4. Subtract this fit from observations.

5. Standardise the resulting residuals by removing the mean value and dividing
by the standard deviation of the residuals from each component at each GVO.

6. Removed all time epochs with gaps in global coverage, except when only
GVO was missing, in which case the missing value was replaced by zero.

7. Compute the non-linear Ledoit-Wolf estimator of the covariance matrix
(Ledoit and Wolf, 2020) which results in a valid (symmetric, positive def-
inite) covariance matrix.

The Ledoit-Wolf nonlinear shrinkage estimator is designed for estimating large
covariance matrices. It is based on a minimum variance criteria and involves re-
taining all eigenvectors of the empirical covariance matrix but shrinking the eigen-
values based on a nonlinear analytic function of the eigenvalues, based on results
from random matrix theory (Ledoit and Wolf, 2020).
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2.2 Re-analyzed core motions over the satellite era
4DEarth_Swarm_Core ESA project deliverable CCN1 D-M.1

N. Gillet
ISTerre

2.2.1 Initial proposition for Task M: a revised pygeodyn release and
core flow models based on sparse estimators

The initial goal of task M was to provide an ensemble of re-analyzed core flow
models inverted from satellite geomagnetic data, taking benefit of existing cross-
covariances between two variables of the core state entering the pygeodyn assim-
ilation software: the flow at large length-scales and the subgrid induction at large
length-scales (Gillet et al, 2019). This source of information has so far been ig-
nored when reconstructing flow models, and we thought that accounting for them
would lead to reduce the uncertainty on the inferred core motions. Such cross-
talking has been observed in simulations of the geodynamo (Gillet et al, 2022),
in particular on the interannual time-scales of interest for wave-like motions. The
correlation is particularly clear when considering the signature of the flow on the
SV signal (see Figure 2.1). The relation between the various fields is summarized
throught the induction equation once projected onto large length-scales, which in
matrix form writes

Btb “ Apbqu ` e “ f ` e , (2.1)

where vectors b, u and e store the parameters describing the magnetic field, the
large scale flow and the subgrid induction terms. The vector f represents the induc-
tion from large-scale fields. The underlying rationale for a correlation between u
and e is due to the fact that the flow on short length-scales (that enters the subgrid
induction term) is correlated to the large-scale flow that is imaged (because the
physics does not care about the spatial resolution of observations).

In the pygeodyn software, the forward model is based on a Wiener filter, which
allows to estimate models from empirical samples in the sense of Least-Squares
(LS). The forward model takes the form of a stochastic differential equation,

Btz “ Dz ` Bw , (2.2)

where zT “
“

uT eT
‰

is the augmented model state, D is the drift matrix, B is a
diffusion matrix and w a white noise. The model (2.2) is a multi-variate Auto-
Regressive process of order 1 (or AR-1). For a model of size P, we seek for two
matrices D and B, each of dimension P ˆ P. In this quest, the advantage of the
LS formalism is its simplicity: the identification of the parameters is linear, and
involves no ad hoc parameter. The drawback is its sensitivity to noise. This latter
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Figure 2.1: Secular variation for the gauss coefficient h1
3 in the 71p dynamo (blue),

separated between an induction term associated with the large-scale flow (green),
and the subgrid induction plus diffusion (orange). The series have been band-pass
filtered at decadal periods. A clear correlation is observed between the two sources
of magnetic field variations.

issue is particularly severe as the dimension of the model space increases, for a
finite length of the sampled dynamo series.

In practice, pygeodyn is run with P “ Pu ` Pe » 400, with Pu “ 200 the
dimension of the large-scale flow state u (once projected onto principal compo-
nents), and Pe “ 195 the dimension of the subgrid induction term e (truncated
at spherical harmonic degree Le “ 13). This means P2 « 160, 000 entries for a
model accounting for cross-covariances between u and e (resp. 40, 000 if consider-
ing instead two decorrelated fields, as operated so far). It is then tempting to search
for algorithms allowing to build sparse models from empirical (dynamo) series.
Together with P.-O. Amblard (statistician at the Gypsa-Lab, Grenoble) we derived
and implemented the ‘Alternative Direction Method of Multipliers’ (ADMM, see
Boyd et al, 2011) for deriving sparse drift and diffusion operators. We managed to
produce sparse matrices as required. However, in practice this did not appear as
a convincing strategy, because we realized that the correlation matrix between u
and e, that enter the construction of D and B, is by escence dense (which is not the
case of correlation matrix between f and e where correlations are more easily de-
tectable). If we partially recover the cross-talking between coefficients of vectors e
and f, the obtained correlations appear entached of noise, with a similar magnitude.
We furthermore fail at unambiguously showing the benefit of the sparse algorithm,
in comparison with the LS estimate.
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We conclude at this stage that the novel approach initially envisionned for
Task M, and the associated improvement of pygeodyn, comes to a dead-end.

2.2.2 New proposal for Task M: a revised pygeodyn release and core
flow models based on higher order empirical models

Meanwhile, we realized that the noise within the ensemble of forecast trajectories
was emphasized by one hypothesis behind the considered stochastic model (2.2):
the limitation to a process of order 1. The motivation for such a model is associ-
ated with the temporal spectrum observed for Btb (and thus u), which behaves as
S p f q9 f ´2 for periods 1 À T “ 1{ f À 100 yr (Lesur et al, 2018), while an process
governed by an AR model of order p presents a PSD 9 f ´2p towards high frequen-
cies. However, the spectrum slope in simulations is steeper at frequencies higher
than Op1{TAq, where TA is the Alfvén time (for the Earth one has TA “ T C

a «2 yr).
As a consequence, and AR-1 process will contain too much power on short time-
scales, in comparison with a geophysical behavior. Recall that the plus of satellite
geomagnetic data, as far as the core dynamics is concerned, is precisely towards
short time-scales.

The choice of an AR-1 model was thus a good basis, but only in a re-
stricted frequency range. In the 71p simulation (Aubert and Gillet, 2021), one
has T ˚

A » 5.8 yr, about three times the geophysical value. For this reason, the dy-
namo could not be sampled at a frequency shortest than « 1{T ˚

A when building an
AR-1 model. In appears that some free runs of a 100p dynamo are now available1.
These simulations, run at closer to Earth-like parameters, present a T ˚

A « T C
A . We

have at hand 8 series, each covering about 100 yr.
In the above context, we thus propose to revise the deliverable for task M, tak-

ing benefit from the new simulations, by fitting higher order AR stochastic models.
Spectra observed for the dynamo series (see Fig. 2.2) advocate for an AR-3 model,
of the form

B3
t z ` A2B2

t z ` A1Btz ` A0z “ Bw , (2.3)

where matrices A0,1,2 and B are to be estimated from dynamo samples. To this
purpose, we plan to use simultaneously

• the initial 71p series (10 kyr long), sampled every ∆t71p “ 5 yr,

• the new 100p series, sampled every ∆t100p “ 0.2 yr.

In practice a model such as (2.3) can be written with the same formalism as (2.2)
for a modified state vector z̃T “

“

zT BtzT B2
t zT

‰

. Consequently, matrices A0,1,2 and
B of the AR-3 model shall be derived using a LS formalism as performed today
with an AR-1 model.

This will result in an improved version of the pygeodyn software, where:

1see https://4d-earth-swarm.univ-grenoble-alpes.fr/data
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Figure 2.2: PSD for the core surface flow coefficient t1,s
2 , from the 71p (grey) and

100 (black) dynamo series, superimposed with slopes 9 f ´2 (orange) and 9 f ´6

(dashed orange), characteristic respectively of an AR-1 and AR-3 models towards
high frequencies.

• The information provided from various simulations along the path (over
various frequency ranges) can be simultaneously integrated, including
the latest simulation presenting an Earth-like Alfvén time.

• The too high power present in the forecast at high frequencies shall be
mitigated; this might be key since it exactly on short time-scales that
satellite data are of greatest value for imaging the core dynamics.

• The resulting analysis will be directly smoothed according to the higher
order equation considered. This shall help in isolating waves on short
interannual periods in the inverted core surface flow models (Istas et al,
2023). It may also be crucial for imaging the electrical conductivity in
the lower mantle, which is perceived as more conducting by core motions
toward short time-scales (Firsov et al, submitted).

Regarding the numerical implementation, the data assimilation tool (based on
an ensemble Kalman filter, see Evensen, 2003) requires for each initialisation of
the forecast (i.e., after each analysis where we adjust the model trajectory by in-
corporating observations) to know the model state at 3 successive forecast epochs.
This shall be performed by simultaneously inverting magnetic data at three succes-
sive epochs, to obtain at each analysis step the model state plus its rate of change
and curvature in time. As such, in the new pygeodyn release the revised algo-
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rithm shall bring some of the benefits from the Kalman smoother (e.g. Cosme et al,
2010).

Revised deliverables for Task M

• Dataset D-M.1 at 01/09/19+54 months: ensemble of core flow models cover-
ing the period 1999-2024, obtained from the improved stochastic reanalysis
tool, and updated geomagnetic satellite datasets (from Task L).

• Report R-M.1 at 01/09/19+54 months: a collaborative scientific study pre-
senting the new developments on the pygeodyn software (implementation of
the higher order model for the forecast and analysis steps), and illustrating
the improvements they bring with respect to the original assimilation tool in
terms of core flow reconstruction.

Deliverable D-M.1 was initially planned at KO+48 months. The new devel-
opments require to postpone by 6 months the production of the new flow models
(thus at KO+54 months).

Revised risk assessment and failure scenarios for Task M

• The derivation of a higher order stochastic forward model simultaneously
from the 71p and 100p dynamo data has already been performed. Its im-
plementation into pygeodyn has been operated and tested by F. Dall’Asta,
engineer at ISTerre.

• The subsequent modifications to the analysis step are currently being im-
plemented into the software. In the case where the developments planned
would not improve our recovery of transient motions, we would resort to the
already working version of pygeodyn. This constitutes the failure scenario.

• The risk thus appears mitigated, as we already have at hand a pydeodyn tool
that is operational. Even if the new tool was not developed in time, flow
models over the considered period range could in any case be produced with
the current version of the software.
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2.3 An ensemble of 3D base states for Earth’s core dy-
namics at epoch 2000 determined by geomagnetic
data assimilation in a numerical geodynamo model
4DEarth_Swarm_Core ESA project deliverable CCN1 D-O.1

J. Aubert
IPG Paris

2.3.1 General description

This document refers to publicly available output data from a sequential frame-
work that assimilates geomagnetic data into a numerical model of the geodynamo.
The framework estimates the internal, three-dimensional state of Earth’s inner and
outer core according to the model, along a temporal trajectory punctuated by anal-
ysis points where the geomagnetic data at the core surface are combined with the
internal dynamics of a background model, following an Kalman filtering strategy
(see Aubert, 2015).

Mathematical models of the geomagnetic field (sets of spherical harmonic co-
efficients describing the core surface magnetic field and its rate-of-change, both up
to spherical harmonic degree and order 13), are used as input data to the framework
from epoch 1840 to epoch 2000. The geomagnetic field models COV-OBS (Gillet
et al, 2013) is used to spin up the assimilation by performing 13 discrete analyses
between epochs 1840 and 1990, after which a 14th analysis performed in epoch
2000 using the field model CHAOS-7-x9 (Finlay et al, 2020). While performing
the analyses, the background geodynamo model is progressively advanced along
a ”path to Earth’s core” in numerical simulation parameter space (Aubert et al,
2017), and reaches 43% along this path at epoch 2000.

The output data supplied here corresponds to the final base state at epoch 2000,
that is suitable for subsequent theoretical and numerical work of the rapid dynam-
ics that sets up on top of this base state throughout the satellite era 2000-2022. This
state is not unique, because the variability of parts that are hidden to observation
need to be estimated in a statistical way. What is supplied here is therefore an en-
semble of 42 three-dimensional base states for the Earth’s core at epoch 2000, that
attempt to respect the statics (core surface magnetic field morphology) and kine-
matics (core surface magnetic field rate-of-change, associated core surface flow,
leading order ”QG-MAC” force balance) while adhering to the dynamical con-
straints enforced at this position along the parameter space path, and sampling the
variability of hidden quantities.
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2.3.2 Data format and description

The file format is MATLAB .mat in version 7.3 i.e. HDF5 compliant. The output
uses a discretisation in physical space along the radial direction, while the lateral
directions are described in a spectral way on a basis of spherical harmonics.

The file Gauss_state.mat contains:

• The radius vector r(1:nr) with nr=140, the number of radial grid points of
the discretisation, and ng=14, the position of the inner-core boundary in the
array r(1:nr). The physical unit of r is km.

• The arrays Bpnm(1:42,1:961,1:nr) and Btnm(1:42,1:961,1:nr) re-
spectively describing the 961 poloidal and toroidal spherical harmonic coef-
ficients of the magnetic field, over the radial grid defined by r(1:nr) (hence
comprising the electrically conducting inner core), and for the 42 members
of the ensemble. The physical unit of Bpnm is T.km and that of Btnm is T.

• The arrays Vpnm(1:42,1:961,1:nr-ng+1) and
Vtnm(1:42,1:961,1:nr-ng+1) respectively describing the 961 poloidal
and toroidal spherical harmonic coefficients of the velocity field, over the
radial grid defined by r(ng:nr) (hence excluding the inner core), and for
the 42 members of the ensemble. The physical unit of Vpnm is km2{yr and
that of Vtnm is km/yr.

• The array Cnm(1:42,1:961,1:nr-ng+1) describing the 961 poloidal and
toroidal spherical harmonic coefficients of the density anomaly field, over
the radial grid defined by r(ng:nr) (hence excluding the inner core), and
for the 42 members of the ensemble. The physical unit of Cnm is kg{m3.

Choosing a spherical coordinate frame with radius r, colatitude θ and the
Greenwich-centered longitude φ, The poloidal-toroidal decomposition is adopted
for the velocity field u and the magnetic field B, such that:

u “ ∇ˆ pVtpr, θ, φqrq ` ∇ˆ ∇ˆ pV ppr, θ, φqrq,

B “ ∇ˆ pBtpr, θ, φqrq ` ∇ˆ ∇ˆ pBppr, θ, φqrq.

Note that r “ rer is the radius vector, and not the radial unit vector er. The
density anomaly Cpr, θ, φq does not need such an expansion as it is a scalar field.

The scalar fields X “ Vt,V p, Bt, Bp,C describing the velocity, magnetic vector
fields as well as the scalar density anomaly field are supplied as real spherical
harmonic coefficients cm

ℓ
prq and sm

ℓ
prq following

Xpr, θ, φq “

30
ÿ

ℓ“0

ℓ
ÿ

m“0

“

cm
ℓ prq cos mφ` sm

ℓ prq sin mφ
‰

Pm
ℓ pcos θq

Here Pm
ℓ

is the Schmidt-seminormalised Legendre function of degree ℓ and order
m. The base state is therefore supplied up to spherical harmonic degree and order
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ℓmax “ mmax “ 30. For each ensemble member labelled i, and in the case where
the inner core is included (i.e. the case of magnetic field coefficients), the ordering
of radially discretized coefficients into MATLAB arrays follows:

Xnmpi, 1, r1 : nrsq “ c0
0prr1 : nrsq

Xnmpi, 2, r1 : nrsq “ c0
1prr1 : nrsq

Xnmpi, 3, r1 : nrsq “ c1
1prr1 : nrsq

Xnmpi, 4, r1 : nrsq “ s1
1prr1 : nrsq

Xnmpi, 5, r1 : nrsq “ c0
2prr1 : nrsq

Xnmpi, 6, r1 : nrsq “ c1
2prr1 : nrsq

Xnmpi, 7, r1 : nrsq “ s1
2prr1 : nrsq

Xnmpi, 8, r1 : nrsq “ c2
2prr1 : nrsq

Xnmpi, 9, r1 : nrsq “ s2
2prr1 : nrsq

...

Xnmpi, 960, r1 : nrsq “ c30
30prr1 : nrsq

Xnmpi, 961, r1 : nrsq “ s30
30prr1 : nrsq

In the case where the inner core is excluded (velocity and density anomaly field
coefficients) these relationships write e.g.:

Xnmpi, 1, r1 : nr´ ng` 1sq “ c0
0prrng : nrsq

Note that the sinus coefficients corresponding to m “ 0 are not stored as they
vanish identically. Note also that unlike previous deliverables of this project, the
coefficient c0

0 is supplied because it is non-zero for the density anomaly field (but
it is otherwise vanishing for all other solenoidal fields).

2.3.3 Graphics for validation
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Figure 2.3: Hammer projection of the radial magnetic field at the external boundary
(radial level nr=140) of the model, for the ensemble average (left) and first member
of the ensemble (right).

Figure 2.4: Hammer projection of the azimuthal magnetic field at the radial level
ir “ 121, corresponding to about 102 km below the core surface, for the ensemble
average (left) and first member of the ensemble (right).

Figure 2.5: Hammer projection of the azimuthal velocity field at the external
boundary (radial level nr=140) of the model, for the ensemble average (left) and
first member of the ensemble (right).
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Figure 2.6: Radial velocity field in the equatorial plane, for the ensemble average
(left) and first member of the ensemble (right).
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Figure 2.7: Azimuthal velocity field in the equatorial plane, for the ensemble aver-
age (left) and first member of the ensemble (right).

Figure 2.8: Density anomaly field in the equatorial plane, for the ensemble average
(left) and first member of the ensemble (right).
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Figure 2.9: Meridional cut of the axisymmetrically-averaged azimuthal magnetic
field, for the ensemble average (left) and first member of the ensemble (right).
Overplotted are also the field lines corresponding to the azimuthally averaged
poloidal magnetic field.

Figure 2.10: Meridional cut of the axisymmetrically-averaged azimuthal velocity
field, for the ensemble average (left) and first member of the ensemble (right).
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Figure 2.11: Quiver plot of the core surface velocity field for the ensemble aver-
age, in Hammer equatorial view, with the arrow greyscale representing the flow
amplitude.

Figure 2.12: Quiver plot of the core surface velocity field for the ensemble average,
in North polar view, with the arrow greyscale representing the flow amplitude.
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3.1 Finding geomagnetic jerks in numerical models using
a Bayesian transdimensional jerk-finding tool
4DEarth_Swarm_Core ESA project deliverable CCN1 R-N.1

P. Livermore
University of Leeds

3.1.1 Introduction

Geomagnetic jerks, abrupt changes in the local dynamics of magnetic field genera-
tion, were first identified as ‘V’-shaped changes in the secular variation at ground-
based observatories. Equivalent to step changes in the secular acceleration or an
impulse in the third time derivative, these were quantified by either by fitting lo-
cally piecewise linear functions (e.g. Brown et al, 2013), or by wavelet analysis
(Mandea et al, 2010). Using new numerical models, the existence of jerks has re-
cently been tied to wave disturbances in the liquid core, both deep and shallow, that
cause rapid changes in the magnetic field (Aubert and Finlay, 2019; Aubert et al,
2022). In principle the signature of jerks might be used to infer the background
state of the core, which ultimately modulates any wave phenomena.

This report extends using a local analysis the recent study of Aubert and col-
leagues (Aubert et al, 2022), who investigated in some detail the causal mechanism
of a variety of global jerk events from the 71% path geodynamo model (Aubert and
Gillet, 2021). The model runs at 71% along a path, where 100% denotes Earth-like
parameters. They produced a catalogue of jerks based on the spatially-averaged
temporal jump in the second time derivative of the magnetic field (Aubert and Fin-
lay, 2019), EJ , whose peaks signify a global jerk. The catalogue comprised 14
prominent events over the duration of the 10000 year, high-resolution dataset (be-
tween 4000 to 14000 years). These events were highlighted because they could be
linked to clear dynamical changes within the core, although the model SV time-
series showed that many more weaker, or non-global, events occurred. If we can
directly relate the recurrence time within the catalogue to Earth, we might ex-
pect that a prominent event would occur with a frequency about 14/10000 yr´1,
or one event every 700 years. This timescale is surprisingly long compared with
the frequency that jerks appear in geomagnetic timeseries over the last few decades
(Pavón-Carrasco et al, 2021): for instance, jerks in 2003, 2007, 2011, 2014, 2017,
which suggests that the quasi-regular events that we observe for Earth are not the
strongest possible.

Local analyses of jerks focus on finding ’V’-shapes in secular variation. One
approach is to find the best-fit two-segment piecewise linear approximation to a
timeseries (e.g. Pinheiro et al, 2011; Brown et al, 2013). While this is technically
straightforward, the key limitation with is that the SV timeseries window needs



3.1. FINDING GEOMAGNETIC JERKS (CCN1 R-N.1) 27

to be subjectively chosen. Usually, but not always, the timeseries is restricted to
a window that includes a visually identified jerk event. Moreover, the timeseries
must only include one jerk or the method will fail. Timeseries must be therefore
be not too long, but neither can they be too short or noise (i.e. unmodelled signal)
in observatory data will prevent reliable jerk detection. Unfortunately it not not
yet possible to predict when jerks will occur, and it is not possible to objectively
choose a suitable SV window length.

Here we explore the possibility of using a recently developed Bayesian method
to find a piecewise linear fit to 10000-year-long SV timeseries from the 71% path
geodynamo model (Aubert and Gillet, 2021). By construction, this will include all
localised ‘V’ shaped signature of jerks. The method has two principal advantages
over previous local analyses. First is that we do not need to subjectively cut the
timeseries into short pieces, one per jerk, but rather treat the entire timeseries as
a whole. Second is that we can quantify the uncertainty of jerk timing. This has
been achieved in some probabilistic studies (Pinheiro et al, 2011; Brown et al,
2013) based on the likelihood (the probability of the data given a model). Here, we
produce a measure of uncertainty based on the posterior probability, the probability
of the jerk model given the SV dataset, which may be more appropriate.

3.1.2 A Bayesian jerk-finder tool

A probabilistic approach

There are two fundamental problems of fitting a piecewise linear function to a time-
series of SV. The first is that the timeseries contains signal other than piecewise
linear (external signal in observatory data, but also unmodelled nonlinear signal).
Therefore we seek a fit to within a reasonable tolerance but not an exact fit. Second
is that we don’t know how complex a piecewise linear function to fit (i.e. how many
vertices). In this study, which is based on the method presented in Livermore et al
(2018), we adopt a probabilistic approach producing a large ensemble of piecewise
linear models that are (a) compatible with the given timeseries (within a defined
tolerance), and (b) which have a number of linear segments which is not chosen
by the user, but rather selected minimalistically by the data. This approach has the
added benefit that the statistics of the ensemble has a clear and probabilistic inter-
pretation whose marginal distributions can be used to identify jerks. For example,
given the ensemble, we can calculate quantities such as the most likely time(s) at
which there is a change in linear slope (i.e. when the jerks occurred), and their
associated most likely change in slope (i.e. the amplitude of the jerk(s), what we
will call ∆).

Our method is based on calculating the statistics of the posterior distribution of
a piecewise linear model (m) fit to a dataset d

ppm|dq “ Cppmq ppd|mq (3.1)

where C is a normalising constant. This equation describes Bayes’ rule, in which
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the probability of the model given the data (the posterior, left hand side) is pro-
portional to the prior distribution (the first term on the right) multiplied by the
likelihood (the second term on the right).

The model

Central to the method is the model m, which describes a piecewise linear function
defined over the time interval rtstart, tends with k interior vertices (or change points).
If the value of the function at tstart (tend) is Fstart (Fend), and each of the k internal
vertices have coordinates (ti, Fiq, the function is described entirely by the vector

m “

ˆ

k, Fstart, Fend, t1, t2, . . . , tk, F1, F2, . . . , Fk

˙

.

The number of internal vertices k ě 0 (and therefore the dimensionality of the
problem) is unspecified (the problem is then termed transdimensional); marginal
statistics of k are a diagnostic of the method.

Although there is no regularisation within our method, Bayesian models al-
ways favour low-dimensionality if the data allows (Sambridge et al, 2006). This
is because although a higher k will in general permit a better data fit (i.e. higher
likelihood), it also means that the prior is smaller in magnitude as the probabil-
ity becomes spread over more dimensions (noting that, as a probability density, it
needs to integrate to 1). Conversely, a low k means that the prior distribution is
more concentrated so takes larger values, but the data fit likely will be worse. Thus
there is a trade-off, with the highest values of the posterior (i.e. the most likely
choice of k) occuring for the lowest values of k that are reasonably compatible
with the data. For the problem of finding jerks, this means that model complexity,
the number of interior vertices (or change points) is only increased if, and when,
the data require. For the ensemble of models describing the posterior, the temporal
distribution of changepoints then reflects the constraints of the data which are pos-
sibly on multiple timescales: faster dynamics require more changepoints, whereas
slower dynamics require fewer.

Prior distributions

The posterior distribution depends upon our choices for the prior distribution,
which describes what is known about the model before the introduction of the data.
Our approach here is to formulate a prior which is as broad as possible (although
noting that no prior is strictly uninformative (Jaynes, 2003)) with the expectation
that the data will heavily constrain the posterior. We may write

ppmq “ ppm|kqppkq

and then further assume that, given k, all remaining components of m are indepen-
dent:

ppm|kq “ ppFstartqppFendq

k
ź

i“1

pptiq
k

ź

i“1

ppFiq.
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We assume that the time and value of each internal vertex is uniformly distributed:

pptiq “

"

ptend ´ tstartq
´1 tstart ď ti ď tend

0 otherwise

and

ppFiq “

"

pFmax ´ Fminq´1 Fmin ď Fi ď Fmax

0 otherwise
(3.2)

for some given Fmin, Fmax. The end-point values are assumed to follow the same
distribution as above.

Finally, we assume that k is uniformly distributed between 0 and kmax for some
given kmax:

ppkq “

"

k´1
max 0 ď k ď kmax

0 otherwise

The likelihood

The remaining ingredient in the posterior is the likelihood function, which mea-
sures the probability of the data given a particular model m. Taking each datum di

(which has an associated time of t̃i) in turn, we calculate the difference between di

and the interpolating linear regression function gpt̃iq. This mismatch is the model
error, which we assume to be Gaussian distributed with mean 0 and standard de-
viation σ, and with each datum independent of the others. The likelihood is then
given by

ppd|mq “ Ae´ϕ, ϕ “

N
ÿ

i“1

`

di ´ gpt̃iq
˘2

2σ2

where A is a normalising constant.
The error budget σ, which will in general depend on time, must account for

any unmodelled signal: that is, anything other than representing Earth’s internal
field with a piecewise linear function. We adopt a value σ “ 3nT{yr which allows
us to recover jerks as reported in the literature (see discussion in §3.1.2).

We note that other techniques to estimate the uncertainty include using the mis-
fit (Pinheiro et al, 2011) or co-estimating σ alongside the other model parameters
(Bodin et al, 2012). Furthermore, our choice of a Gaussian likelihood is purely ex-
pedient, and it would be straightforward to adopt other distributions, for instance,
with longer tails.

Numerical realisation

Although equation (3.1) gives a simple description for the posterior distribution in
which all terms are known analytically, our goals for jerk finding require marginal
distributions. For instance, in order to calculate the posterior distribution of change
points with time, we need to marginalise (i.e. integrate out) all the other model
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parameters (the F values, and k). Similarly, the posterior probability distribution
of jerk amplitude with time requires marginalisation. Unfortunately, there is no
direct way to calculate this from equation (1), and numerical methods are required.
We use a reverse jump Monte Carlo Markov chain methodology to produce a large
ensemble of models m, whose statistics converge to the posterior distribution we
seek to quantify. Models which are more probable occur with higher frequency, and
marginalisation is straightforward by simply quantifying the frequency of specific
features across the ensemble.

Reverse jump MCMC methods require the construction of a chain of models.
Starting with the current model m, a perturbed model m̃ is proposed, which differs
from the current model by a random change. If the proposed model passes an
acceptance test based on its posterior probability it is adopted as the next model
in the chain; if not, model m is duplicated and used as the next model. Proposed
models which have a higher posterior probability than the current model are always
accepted, whereas models which are less likely are only sometimes accepted, and
in this way the chain describes a guided random walk through model space.

The perturbations that occur to the current model at every step are chosen ran-
domly from three choices. Perturbations of type (1), which occur with probability
1{2, select a vertex at random (say index i, which could be the end points or an
internal vertex) and add a random value to Fi, distributed Np0, σ2

changeq. Pertur-
bations of type (2), which occur with probability 1{6, select an internal vertex at
random and move it in time by a random amount distributed Np0, σ2

moveq. Pertur-
bations of type (3a), which occur with probability 1{6 insert a new internal vertex
(i.e. vertex birth) at a uniformly distributed time t˚ between tstart and tend. The pro-
posed vertex is assigned a value gpt˚q ` a, where gpt˚q is the value of the linearly
interpolated regression under the current model at t˚ and a is a random amount
drawn from Np0, σ2

birthq. Finally, in perturbations of type (3b) which occurs with
probability 1{6, a random internal vertex is removed (i.e. vertex death).

The values σchange, σmove, σbirth control how efficiently the model space is sam-
pled, and appropriate choices are key to ensure that the ensemble statistics converge
rapidly. The values σchange, σbirth are chosen to be the same as the likelihood error
budget of 3 nT/yr; while the value σmove is chosen as 1yr, approximately the min-
imum resolvable timescale of core dynamics from a single location (Backus et al,
1996).

From random parameter values for the initial model, we run the chain for a
burn-in length of 10,000. We then collect the next 1,000,000 models in the chain,
which is thinned to 10,000 (keeping every 100th model). This procedure is adopted
in order that the statistics are not biased by the choice of initial condition. In terms
of the other parameters, we choose a value of Kmax to be at least 100, and Fmin,
Fmax to be the minimum and maximum values of the timeseries. Each calculation
is checked to make sure that Kmax is sufficiently large. With these sampling param-
eters, the probability that a given proposed model is accepted (under perturbations
(1,2,3a,3b) as above) are approximately 40%, 30%, 2%, 2%, which provides effi-



3.1. FINDING GEOMAGNETIC JERKS (CCN1 R-N.1) 31

cient sampling (Roberts, 1996).

Jerk diagnostics

To find geomagnetic jerks we use the ensemble in a two step process: finding times
at which the probability of a changepoint is high, and then checking that the asso-
ciated slope change is sufficiently large to qualify as a jerk, ruling out very shallow
‘V’ shapes. The method makes use of the marginal distribution of changepoint
density with time (termed here as Cptq), and the 2D marginal distribution of slope
change with change point time. These discrete distributions are efficiently calcu-
lated by binning the relevant quantities across the ensemble. The two steps then
are:

1. Find the times ti corresponding to distinct and prominent peaks in Cptq

2. For each peak ti identified, test whether the modal slope change ∆i exceeds
a threshold.

In step (1), only prominent peaks are of interest to jerk identification, which we
quantify using topographic prominence 1 and set the threshold to be the standard
deviation of the distribution. We keep only peaks that are a minimum of one year
apart. In step (2), restricting to a single event at time ti produces a 1D probability
density function of slope change at t “ ti. We define ∆i to be the modal slope
change for this event (its most likely value); if ∆i exceeds a threshold which we
take to be 1 nT/yr2 in absolute value we classify the peak as a jerk.

For each peak at ti we estimate error bounds on jerk timing by locally fitting
a one-sided Gaussian curve to Cptq on either side of the peak. Practically, we find
the minimum a ą 0, b ą 0 such that Cpti ´ aq ă τCptiq and Cpti ` bq ă τCptiq.
If Cptq is Gaussian distributed, then Cptq drops by a factor of e´1{2 « 0.61 at a
time 1 standard deviation from its peak. Thus τ “ 0.61 gives approximately a
1-standard-deviation credible interval.

The thresholds for jerk-amplitude and prominence can be viewed as sensitivity
parameters, and delineate rapid ‘V’-shape changes in the SV from other events,
which could be ’V’ shapes with a very shallow gradient change, or smoother non-
piecewise-linear changes. The values we have chosen here are able to characterise
jerk events similar to other methods as reported in the literature (see subsection
3.1.2).

We note that there are other definitions of a jerk that can be made using the en-
semble. For example, Aubert et al (2022) calculated the discrete posterior average
absolute change in slope, which was then compared to a baseline value. However,
measures based on the mean properties are less robust to extreme ensemble mem-
bers than metrics based on the highest probability features, and are therefore slower
to converge. For this reason, modal values are adopted in this report.

1implemented by the Python package Scipy
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Synthetic examples

Here we illustrate the method by creating several secular variation timeseries which
have an underlying exact piecewise linear dependence but with added noise. The
aim here is to see how well our method can recover the known jerks.

Figure 3.1.2(a) shows a very simple, single ‘V’ shape over the time interval
r0, 100s yr with a change of slope of 4 nT/yr2 at t “ 50. The timeseries has been
sampled yearly and Gaussian distributed noise (mean zero and standard deviation
3 nT/yr) has been added (fig 3.1.2(b)). This is now the dataset which we pass to
the jerk-finder.

The resulting posterior distribution of the piecewise linear fits is shown in fig
3.1.2(b), in which the mean, median and modal models recover well the under-
lying ‘V’-shape. Figure 3.1.2(c) shows that the marginal posterior distribution of
the number of vertices peaks with a single vertex (consistent with the underlying
behaviour) but that a higher number of vertices are possible with a much smaller
probability. This is a good illustration of the parsimonious nature of Bayesian
methods, which favours simple models when compatible with the data constraints.

In order to use the ensemble to find jerks, figure 3.1.2(d) shows that Cptq has
a single prominent peak at t1 “ 50.2 (using a temporal bin width of 0.1), from
which we can compute the 1-standard deviation credible interval of r50, 50.5s,
which noteably contains the correct value t “ 50. Figure 3.1.2(e) shows the 2D
histogram of slope change with timing, from which the most likely value of the
change in slope is ∆1 “ ´3.95 nT/yr2, thus qualifying the peak as a jerk. The
recovered jerk timing and amplitude values are very close to t “ 50, ∆ “ ´4.
The final output of the jerk finder is summarised in figure 3.1.2(f) which shows the
dataset alongside a vertical bar showing the amplitude of the single reported jerk
whose width indicates the timing uncertainty.

In a second example shown in figure 3.2, we apply the method to a timeseries
containing three jerks, associated with three increasingly severe changes in slope
at t “ 20, t “ 60 and t “ 75. We follow the same procedure as before: add
noise, use the dataset as input for the jerk finder, and plot the same diagnostics as
for the previous example. Figure 3.2(b) shows that again the ensemble finds the
piecewise linear dependence, whose number of internal vertices peaks at 3 (figure
3.2(c)). Figure 3.2(d) shows three peaks in Cptq, whose value of ∆ is sufficiently
large to qualify as jerks (figures 3.2(e,f)). Each of the known changes in slope
fall within the given uncertainty bounds for jerk timing. The uncertainty interval
is broader for the weaker jerks than the most severe because the (assumed fixed)
noise has a relatively large effect on the fit to the data; at these times the ensemble
is correspondingly more diverse and the changepoint distribution more spread out.

Finding jerks in geomagnetic and simulated models

Having demonstrated that the methodology works well in simple synthetic cases,
we now apply the method to a variety of global geomagnetic models in order to
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Figure 3.1: Finding jerks within a simple timeseries of secular variation. The
original noise-free timeseries (a) is sampled yearly and 3 nT/yr noise is added
(b). The mean, mode and median of the posterior distribution given this dataset is
shown in (b), with the marginal distribution of the number of change points in (c)
and their timing Cptq in (d). Part (e) shows the 2D marginal discrete probability
of the timing of the changepoints with their associated slope changes. Part (f)
shows a summary: the data is shown as blue circles (right hand axis); the absolute
amplitude of the jerk is shown as a dashed black line (left hand axis) with the
timing uncertainty shown as light blue shading.
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Figure 3.2: Finding jerks within a timeseries of secular variation containing three
increasingly severe changes in slope at t “ 20, 50, 75. An exact piecewise linear
timeseries is sampled yearly (a) and 3 nT/yr noise is added. This data, with key
diagnostics from the posterior distribution are shown in (b). The marginal distribu-
tion of the number of internal vertices is shown in (c) and their timing Cptq in (d).
Part (e) shows the 2D marginal discrete probability of the time of the changepoints
with their associated slope changes. (f) shows a summary of the jerk finder: the
data are shown as blue circles; the absolute amplitude of the jerk is shown as a
dashed black line with the timing uncertainty shown as light blue shading.
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confirm that our jerk classification agrees with results from previously published
literature. We focus on global models, rather than observatory datasets, as ulti-
mately our goal is to study the global 71% path model. However, we make com-
parisons with observatory data where possible.

Figure 3.3 shows the eastwood component of secular variation from three
global geomagnetic models evaluated at the site of a geomagnetic observatory (a-
c), with (d) showing a similar timeseries but from the 71% path model. We focus
on the Y-component here as jerks are often more easily identified within this com-
ponent in observatory datasets, but similar plots can be made using the other com-
ponents with similar conclusions. Because of the discrepancy of jerk timescales of
a factor of 3, we use yearly values of SV (from annual differences) for the 71% path
model, whereas we use 4-monthly values of SV from the geomagnetic models.

Figure 3.3(a) shows the jerk around 1969/1970, one of the best known jerks
in historical data, as seen at the Niemegk (Germany) observatory according to the
CHAOS-1969 global model (Blangsbøll et al, 2022), plotted alongside observatory
data. The jerk-finder identifies the jerk at 1970 with an amplitude of about 5 nT/yr2,
agreeing with previous studies (Blangsbøll et al, 2022). A weaker jerk is also seen
around 1978 (Alexandrescu et al, 1995).

More recent secular variation from the era of continuous satellite monitoring
using the CHAOS-7.14 model (Finlay et al, 2020) is shown in figure 3.3(b), where
we have chosen to show the SV in Canberra (Australia). The analysis highlights the
recent jerks (2011, 2014, 2017, 2020) in the Pacific region (Pavón-Carrasco et al,
2021); no jerks were found prior to 2012. Investigating a much longer timeseries,
figure 3.3(c) shows secular variation from the mean COV-OBS.x2 model (Huder
et al, 2020) over the period 1840 - 2020 in Honolulu (USA). The algorithm found
20 jerks, including widely documented events at 2004, 2011 and 2017, with the
strongest jerk at 1930 with an amplitude of -7.5 nT/yr2 (Alexandrescu et al, 1995).

Finally, we contrast these results with a timeseries drawn from the 71% path
model in 3.3(d). We chose a 100 yr time window of secular variation containing
the strongest global jerk event (at t “ 8880) as documented by (Aubert et al,
2022). The jerk finder discovers jerks around t “ 8880: interestingly not just one
but 13 events, the largest magnitude of which has ∆ “ ´40nT/yr2 and marks the
first arrival of a train of oscillations. The jerks are much higher in amplitude than
those from the geomagnetic SV timeseries, mainly due to the much increased scale
range for the SV. Because the 71% path model has an Alfvén time that is three
times longer than the Earth, the duration of any jerk event is too long by a factor
of 3. Thus if this event were to be replicated in Earth, it would have a value of
∆ « ´120nT/yr2.

Choice of parameters

The purpose of the jerk-finding algorithm as described here is to discover jerks
in a systematic manner which is as objective as possible: for example, avoiding
the subjective windowing of the SV timeseries in order to fit one jerk at a time.
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Figure 3.3: Application of the jerk-finder on geomagnetic and simulated datasets.
(a) Y-component of secular variation at Niemegk according to the CHAOS-1969
global geomagnetic model from 1960-1980 (blue dots) with observatory data
(small red dots); (b) Y-component of secular variation at Canberra observatory ac-
cording to the CHAOS-7.14 model from 1999-2023 (blue dots); (c) Y-component
of secular variation at Honolulu according to the COV-OBS.x2 model from 1840-
2020 (blue dots); (d) Y-component of secular variation evaluated at Gan Interna-
tional Airport (Maldives) according to the 71% path model over the time interval
[8830, 8930] (blue dots). In each case, jerks are shown by the vertical dashed lines,
whose uncertainty is represented by the light blue vertical bar.
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However, unavoidably there are parameters involved which need to be subjectively
tuned.

One set of key parameters describe the prior density functions. However, we
do not discuss these further as they are sufficiently broad to span most behaviour,
and we assume that the constraints of the data predominate over any remaining
dependence on the prior.

Possibly the most important of the remaining parameters is σ which describes
the likelihood uncertainty. For secular variation timeseries derived from both
global geomagnetic models and geomagnetic simulations, this uncertainty has two
contributions. Firstly there is a time-dependent representation error, because the
timeseries are not always exactly piecewise linear, and indeed the representation
may be better at some times compared to others. Secondly there is model er-
ror due to the fact that neither dataset accurately describes the internal field. For
the case of global geomagnetic models, this inaccuracy arises because of leakage
from the external field due to incomplete separation of the internal and external
fields; for numerical geodynamo models this arises from numerically misrepre-
senting the Earth, driven by inaccurate geodynamo non-dimensional parameters,
energy sources or boundary conditions. From a practical viewpoint, σ is a measure
of the data-fitting tolerance of the piecewise linear model which is is tantamount
to a smoothing parameter. Large values of σ permit a large discrepancy to the
data, but because of the inherent parsimonious nature of the method, badly-fitting
low-dimensional models will be preferred over more complex but similarly badly
fitting models (i.e. there will be oversmoothing). By contrast, smaller values of σ
will require a close fit to the data and therefore (possibly) a complex model. It’s
worth pointing out that here “smoothing” means fitting using a smaller number of
linear segments, not necessarily involving a piecewise linear representation with
smaller gradients. We can therefore safely adopt the same value of σ for both geo-
magnetic and simulated models: because even though the timescales may differ for
a jerk event, we would require the same number of linear segments to describe a
jerk in each case (the changepoints in the geomagnetic case would simply be more
compressed in time, compared to the simulation).

The value of σ “ 3nT/yr we have chosen imposes an appropriate amount of
smoothing that allows us to recover the same jerks as reported by other researchers.
Ultimately this value is subjective however; taking a smaller value results in more
jerks, and taking a larger value results in fewer jerks. Taking a uniform value across
all models also allows direct comparison between analyses on different datasets.
For example, the CHAOS-7 and COV-OBS.x2 models are both predominantly con-
strained by the same satellite data over 2000-2020, and our algorithm (with our
choice of σ “ 3nT/yr) finds the same jerks in each over this period. However, such
agreement would not occur, for example, if σ was not constant but depended on di-
agnostics which differed between models. The disagreement would arise because
σ (and therefore the smoothing) would be different in these two cases, and thus
the jerk diagnostics would be different. One such diagnostic is the minimum to
maximum range in SV over the whole model (as adopted in (Aubert et al, 2022)).
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3.1.3 Jerks within the 71% path model

Having demonstrated that the Bayesian algorithm works on sample datasets, we
are now in a position to apply the jerk-finder to timeseries from the entire 71%
path model evaluated on a grid of points on the Earth’s surface.

Long timeseries

Long timeseries are challenging to handle with the MCMC algorithm as the modal
number of linear segments is likely very large. Based on the examples in sub-
section 3.1.2, we approximately require about 1 linear segment per 5 years. A
single complete timeseries from the 71% path model (sampled yearly, from 4200
to 14,200), would then require about 2000 linear segments. This should be con-
trasted with the 100-year long examples in figure 3.3 which require only about 20
segments. Because the Markov chain length required to explore N degrees of free-
dom scales exponentially with N, even a modest increase in N can amount to a
massive increase in computational time. For long time series, this computational
cost is compounded by the increase of each individual proposed model comparison
simply due to there being more data in the likelihood calculation.

Our approach instead is to divide a long time interval into sequential shorter
windows of length 400 years. We can apply the MCMC algorithm on each window
separately, and simply concatenate the resulting histograms of jerk statistics. We
note that this is quite different to dividing the SV timeseries into single-jerk time
windows; here, each 400 year timeseries contains numerous jerks. To ensure that
there are no edge effects in the construction of the ensemble, we include an overlap
of 50 years on each side (except at the end points) for the MCMC algorithm, which
is then ignored when collecting the statistics. Thus we separate the range 4200 to
14,200 into 25 time windows [4200,4650], [4550,5050], and so on. Applying the
MCMC algorithm to each window individually produces converged results with
a chain length of only 1M. By performing 25 separate calculations, one for each
time window, we can then analyse the whole timeseries at modest computational
expense.

Figure 3.4 shows how the 10,000 years of the path model is divided into 400
year windows (the overlaps at either end of each window are not shown), illus-
trated by a timeseries of the Y-component of SV on the geographic equator at 45˝

longitude, the approximate location of one of the strongest events from the jerk
catalogue at t “ 8880 yrs. The results of applying the MCMC algorithm to one
of these windows [8600,9000] is shown in figure 3.5. In all components, there are
clusters of jerks both around t “ 8880 and t “ 8700 with the strongest in the Z-
component around t “ 8880 with a value of |∆| of 36 nT/yr2. The MCMC method
therefore finds evidence of strong jerk events at t “ 8880, a timing that agrees with
the jerk energy global analysis of Aubert et al (2022) (see bottom panel of figure
3.5), defined as

EJ “ă prB2
t Bs

t`3
t ´ rB2

t Bst
t´3q2 ą (3.3)
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where ă ą denotes a global average and r s denotes a time average Interestingly
the jerks identified around t “ 8700 do not feature in the global diagnostic and so
must therefore be local, rather than global events.
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Figure 3.4: The top row shows the decomposition of the 10,000 years of the 71%
path model into 400 year windows, illustrated by yearly values of the Y component
of SV at colatitude 90˝ and longitude 45˝. The bottom row shows two illustrative
400-year windows with 50 years of overlap at either side.

Jerk occurence

The results from an entire timeseries of SV at a single location (colatitude 90˝ and
longitude 45˝) are shown in figure 3.6, alongside a comparison to the global jerk
energy. It is difficult to see the details as the timescale is too compressed, and it is
clear that simpler diagnostics are required to probe the results. Nevertheless, we
can identify that the major jerks in the different field components occur at similar
times, although the magnitude of the jerks differs between the components, with
the strongest in the Z component. Each of the peaks in EJ has a corresponding
peak in the MCMC analysis of one of the components: that is, the global jerks
have a local expression. The converse is mostly but not always true: strong local
jerks (∆ « 25nT/yr2) occur in BZ around t “ 11, 500yrs without any notable
signature in EJ . The fact that jerks are often strongest in the Z component has been
previously reported by several works (Olsen and Mandea, 2007; Aubert et al, 2022;
Hellio et al, 2014), and may be related to the fact that (due to the geometry) BZ has
a higher magnitude than the other components.

Figure 3.7(left) shows a 100yr segment of the complete timeseries, centred t “

8880, one of the strongest global jerks, driven by a shallow-wave. It is noteworthy
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Figure 3.5: An example 400 year window from the 71% path model of the SV at
Earth’s surface at colatitude 90˝ and longitude 45˝. Red shows the three compo-
nents of SV (right axis), while the jerks are shown by the vertical dashed lines with
uncertainty shaded in light blue. The bottom row shows the global diagnostic jerk
energy of Aubert et al (2022) for comparison.
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Figure 3.6: Jerk analysis of an entire timeseries from the 71% path model at colati-
tude 90˝ and longitude 45˝. The top three panels show the X, Y and Z components
of SV (red), with the jerks as dashed lines. The bottom panel shows the global jerk
energy diagnostic for comparison.
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that although jerks occur in all three components approximately at the same time,
the number of jerks around the t “ 8880 event, their amplitude and their exact
timing are not the same. Indeed, jerks occur earliest in the Z component and have
a stronger signature; there is a delay of about 1-2 years between the first major
jerk in the Z component around t “ 8880 and its counterpart in the X and Z
components. This temporal offset is in agreement with geomagnetic observations
and arises because of the different spatial sensitivity of the components on Earth’s
surface to the magnetic source on the core-mantle boundary. Overall, the event
lasts about 20 years (between t “ 8880 and t “ 8900. We contrast this to a weaker
event around t “ 13543 (driven by a deep wave). The signature is still dominated
by the Z-component, but interestingly the event seems more protracted and seems
to extend to (at least) the entire 100 year time window shown.
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Figure 3.7: Jerk analysis of an entire timeseries but shown only for the 100yr period
centred at t “ 8880, one of the strongest global jerks (SW), at colatitude 90˝ and
longitude 45˝ (left) and at t “ 13543 (right), a DW event The top three panels show
the X, Y and Z components of SV (red), with the jerks as dashed lines. The bottom
panel shows the global jerk energy diagnostic for comparison. Although the jerk
signature broadly aligns in all three components, in detail, neither the number of
jerks, their strength or their timing agree between the three magnetic components.
The SW event is very short, whereas the DW event is more protracted.

One way of characterising global jerk activity is to take the time-dependent
maximum value of jerk activity over Earth’s surface. We calculate this by quanti-
fying the maximum value of |∆| over all of the spatial locations on the 5x5 degree
grid in yearly time bins. Figure 3.8 shows the results of this for each of the compo-
nents (upper three panels) along with the maximum over all components (bottom
panel). The peaks in the global jerk energy all align with peaks in the maximum
value of EJ , showing that the local and global analyses agree well. However, the
local method finds many more strong local jerks than appear in EJ: there are 233
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years in which |∆Z|max exceeds 40nT/yr2. Thus we find at least 233 locally domi-
nant events, in contrast to 14 globally dominant events in EJ .
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Figure 3.8: Maximum |∆| over all spatial locations as a function of time, for each
component (upper three panels). The lower panel is the maximum value over all
components, overlaid by the global jerk energy diagnostic. All the |∆| diagnostics
shown have units of nT/yr2.

It is also of interest to probe how often a jerk event occurs in the 71% path
model. Figure 3.8 shows that in all years there is some jerk activity, that is (|∆| ą 1)
somewhere on Earth’s surface. Thus at no time is the modelled Earth “quiet” with
no jerk activity: jerks are a ubiquitous feature.

Another diagnostic of interest is to quantify how often jerks of different
strengths occur. Counting the number of years that the spatial maximum of |∆|

exceeds a threshold allows us to calculate the recurrence time of a jerk event that
may occur anywhere on Earth’s surface. Figure 3.9 shows that larger events occur
most frequently in the Z component, followed by the Y and X components respec-
tively. For example, jerks that exceed 40nT/yr2 occur every 1400, 300, 30 years
for the X, Y and Z components. Another point of interest is that for weaker events
(up to about 5nT/yr2), jerks occur with the same yearly frequency in all three com-
ponents. Thus weak events occur every year in all components, but stronger events
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occur less frequency and predominantly in the Z component.
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Figure 3.9: Recurrence time of jerk events with |∆|max exceeding a given threshold
anywhere on Earth’s surface, for each component.

On a global scale jerks have been shown to be ubitquitous, but locally this may
not be the case. At any location on the Earth’s surface, we can compute a pdf
of the inter-jerk time interval. Figure 3.10 shows globally-averaged pdfs for the
inter-jerk interval for the three magnetic components separately, and taken together.
Compared with the X and Y components, the Z-component has a distribution which
favours a shorter inter-jerk time, thus on average has frequent events. The modal
wait time between jerks is about 5 yrs (with a mean value of about 10 yrs) in both
any component or stacking the components, but the long tail indicates that some
locations have a much longer wait in between events. Over the 10000 years, the
maximum inter-jerk wait time occuring between events is 260 years, which occurs
in the Y-component of SV at colatitude 120˝ and longitude -150.0˝. Figure 3.11
shows histograms of the jerk amplitude stacked over all spatial locations. The
histograms for the X and Y components have a similar shape (both with mean
4nT/yr2, but that of the Z component (with mean 6nT/yr2) has a longer tail towards
the right which skews the distribution. Thus, of those events classified as jerks, the
Z-component has a higher proportion of high amplitude jerks. Overall, not only
are jerks more frequent in the Z-component they are stronger too: thus explaining
the relatively low recurrence time for high amplitude events.

Spatial distribution of jerks

We now turn to the spatial distribution of geomagnetic jerks in the 71% path model.
Figure 3.12 shows the maximum absolute jerk amplitude as a function of spatial
location over the entire 10000 timeseries.

The strongest jerk activity occurs in the 90˝ longitude sector centred around
the Indian ocean. The largest amplitude jerks occur in the Z-component, while
the X and Y component see weaker events. This spatial preference is related to
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Figure 3.10: Global average of the spatially localised inter-jerk time interval, over
all components. The modal wait time for the globally-averaged pdf for a jerk in
any component is 5yrs.
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Figure 3.11: Histogram of jerk amplitude for each component, stacked over all
spatial locations.
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the inner-core boundary condition of the path model, at which there is a maximum
mass anomaly release beneath Indonesia (see Aubert et al, 2013).
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Figure 3.12: Plots of the temporally maximum value of |∆| over the 10000 year
timeseries from the 71% path model, for the three magnetic components X (top),
Y (middle), Z (bottom).

We noted earlier that the jerks appear to separate into either weak events (|∆| ă

5) which occur somewhere on Earth’s surface every year, and stronger events with
|∆| ą 5 which have a longer recurrence time.

Figure 3.13 shows the average frequency of various strengths of jerk (weak,
strong, extreme) attained by simply counting the number of events in each category
over the 10000 years of the 71% model. In the top row, we see that weak events
occur with a spatially uniform frequency of about 5 events per 100 years, consistent
with the previously documented result that a weak jerk occurs somewhere every
year. Stronger jerks occur with comparable frequency (10 per 100 years) but they
are focussed over the Indian ocean. Extreme jerks only occur with a frequency of
5 per 100 years and are again focussed over the Indian ocean.

We see therefore two distinct behaviours: weak jerks that occur about every 20
years everywhere, without any spatial preference; and strong jerks that occur (in
this model) preferentially around the Indian ocean.

Finally we investigate the spatial distribution of jerk activity around global
events in figure 3.14, which shows the value of ∆ with largest absolute value in the
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Figure 3.13: Frequency of weak jerks (|∆| ă 5 nT/yr2, upper row), strong jerks
(5 ă |∆| ă 10nT/yr2, middle row) and extreme jerks (10 ă |∆| ă 50nT/yr2,
bottom row) for each component X, Y and Z. Weak jerks have a homogeneous
distribution, but in this model strong and extreme jerks are centred around the
Indian ocean.

10 year time interval centred on four global events. The four global events (from
the catalogue) that have been chosen are 1, 5, 8 and 9, which correspond to shallow
wave, deep wave, shallow convection and shallow wave triggering respectively.
The left column shows the signature in BY , which should be compared to figure 12
of Aubert et al (2022). The right column shows the signature in BZ , which is more
pronounced than that in BY . None of the jerk events are global, as there are patches
of white in all the figures (corresponding to locations where there were no jerks).
Jerk 9 has the highest value of |∆| yet jerk 5 and 8 are more global. The events
driven by wave breaking have high equatorial symmetry, whereas that caused by
convection (event 8) is focussed at high southern latitude. This lack of symmetry
is much more apparent in figure 3.14 than in the equivalent plot of Aubert et al
(2022). The equatorial symmetry of a jerk may therefore be a useful discriminant
for the triggering mechanism: non-equatorial signatures are non-wave triggered.

Comparison to the Earth

It is of interest to relate the results from the 71% path model to Earth. The path
model is designed so that the timescales and amplitudes of SV and SA are Earth-
like; however, at 71% of the path not all rapid dynamics are resolved and as we
approach 100% of the path, we would expect jerks of higher amplitude for any
given recurrence time. Following Aubert and Gillet (2021); Aubert (2023) we
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Figure 3.14: Spatial distribution of ∆ which has the maximum absolute value in
the 10yr time interval centred on the reported global jerk event time, for events
1,5,8,9 in rows 1-4. The left column shows the signal in BY , and the right column
the signal in BZ .
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therefore transform figure 3.9 showing the recurrence time of jerks, increasing all
the jerk strengths by a factor of

?
1001{4 « 1.8 (noting that EJ scales with the

path parameter ϵ as ϵ´1{4, and ∆ scales like
?

EJ . Figure 3.15 shows the Earth-
like recurrence time for jerks in the three components. In the satellite era, the jerk
amplitude for the 2003 jerk in the Z component was about 30 nT/yr2 (e.g. Olsen
and Mandea, 2007), which corresponds to a recurrence time of about 5 years. Thus
the rescaled numerical model appears to be consistent with the geomagnetic field.
Interestingly, this also means over the course of an average 20 year time period,
we would expect to see one double-strength jerk with amplitude 60 nT/yr2 in the
Z-component. There is no evidence to suggest we have seen such an event in the
era of continuous satellite monitoring (1999-).
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Figure 3.15: Recurrence time of jerk events with |∆|max exceeding a given thresh-
old anywhere on Earth’s surface, for each component. Rescaled to Earth, i.e. 100%
path.

Conclusions

Overall, this report has documented the application of a new Bayesian local jerk-
finding method to the 10000 year dataset of the 71% path geodynamo model. Key
findings are:

• The jerk-finding tool can rediscover jerks reported in the literature found us-
ing other techniques, but using an automated approach based on a piecewise
linear representation.

• We rediscover the 14 global jerks reported by Aubert et al (2022), while
documenting many more local events.

• Jerks in the different magnetic components often occur with a short time
delay (1-2 years).
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• Jerks in the Z-component are much more common and stronger than in the
other components.

• There are no quiet times for jerks: every year there is at least one jerk (some-
where).

• Weak events occur everywhere with uniform frequency, while stronger
events are focussed around the Indian ocean.

• Equatorial symmetry of jerk signatures could be a useful discriminant be-
tween different triggering mechanisms.

• Recurrence times, rescaled to Earth, indicate that jerks in the Z-component
with amplitude 30 nT/yr2 occur every 5 years, whereas events twice as strong
occur every 20 years.
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3.2 An ensemble of 3D base states for Earth’s core dy-
namics at epoch 2000 determined by geomagnetic
data assimilation in a numerical geodynamo model
4DEarth_Swarm_Core ESA project deliverable CCN1 R-O.1

J. Aubert
IPG Paris

This deliverable is contained in the following publication: J. Aubert, State and evo-
lution of the geodynamo from numerical models reaching the physical conditions
of Earth’s core, Geophys. J. Int., 235(1), 468-487.

abstract:

Our understanding of the geodynamo has recently progressed thanks to geomag-
netic data of improved quality, and analyses resting on numerical simulations of
increasing realism. Here, these two advances are combined in order to diagnose
the state and present dynamics of Earth’s core in physically realistic conditions.
A sequential, ensemble-based framework assimilates the output of geomagnetic
field models covering the past 180 yr into a numerical geodynamo simulation, the
physical realism of which is also advanced as data is assimilated. The internal dy-
namical structure estimated for the geodynamo at present reproduces previously
widely documented features such as a planetary-scale, eccentric westwards gyre
and localization of buoyancy release beneath the Eastern (0˝E – 180˝E) hemi-
sphere. Relating the typical magnetic variation timescale of the assimilated states
to the power at which they operate, the present convective power of the geodynamo
is estimated at 2.95 ˘ 0.2 TW, corresponding to an adiabatic heat flow out of the
core of 14.8 ˘ 1 TW if the top of the core is convectively neutrally stratified at
present. For the first time, morphologically and dynamically relevant trajectories
are obtained by integrating the estimated states forward for a few decades of physi-
cal time using a model reaching the physical conditions of Earth’s core. Such simu-
lations accurately account for the spatio-temporal content of high-resolution satel-
lite geomagnetic field models and confirm earlier interpretations in terms of rapid
core dynamics. The enforcement of a realistic force balance approaching a Taylor
state allows for propagation of weak (velocity perturbation of about 0.6 km.yrfl1)
axisymmetric torsional waves with period about 5 yr, supported by a magnetic
field of root-mean-squared amplitude of 5.6 mT inside the core. Quasi-geostrophic
magneto-Coriolis waves of interannual periods and significantly stronger velocity
perturbation (about 7 km.yrfl1) are also reproduced, with properties that converge
towards those recently retrieved from the analysis of geomagnetic variations be-
fore fully achieving Earth’s core conditions. The power spectral density of mag-
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netic variations falls off rapidly at frequencies exceeding the inverse Alfvén time
(about 0.6 yrfl1), which indicates that the excitation of hydromagnetic waves occurs
preferentially at large spatial scales. The possibility to account for geomagnetic
variations from years to centuries in physically realistic models opens the perspec-
tive of better constraining properties of the deep Earth through geomagnetic data
assimilation.
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